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Calculation of the induced
electromagnetic field created by an
arbitrary current distribution located
outside a conductive cylinder
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Institute of Technical Physics, Department of NDT, 47 D Mangeron Avenue,
Iasi 6600, Romania

Received 10 October 1996, in final form 12 May 1997

Abstract. The present work approaches the problem of determining, by analytical
solutions, the electromagnetic field created by an arbitrary distribution of alternating
currents placed outside an infinitely long non-magnetic conductive cylinder. Making
use of the dyadic Green function method, the electromagnetic field outside the
cylinder is expressed as the sum of the field in free space and the field created by
the currents induced in the conductive cylinder. The general results we obtained
are particularized for the analytical solutions describing the operation of an eddy
current transducer with rotating magnetic field for the case of a conductive cylinder
non-coaxial with the current source.

1. Introduction

In eddy current non-destructive control theory the work
of Dodd and Deeds [1] has represented the first complete
analytical treatment for two situations frequently occurring
in practice: a circular coil placed on a conductive half-
space, and an infinite conductive cylinder coaxial with
the coil. The proposed method can be applied to axial
symmetries leading to closed-form solutions by means of
the Fourier–Bessel integrals.

To model asymmetrical transducer operation, Bessner
and Sablick [2] have determined the electric field inside a
half-space conductor for an external current source of an
arbitrary shape. Subsequent developments have permitted
the modelling of the response of eddy current transducers
with various shapes, even in the presence of material
discontinuities [3, 4].

A possible method to solve this problem consists in
the utilization of the dyadic Green functions [5, 6]. This
procedure has the advantage of enabling the solution to
be written in a formal form for any current source shape,
simultaneously reducing the number of zones into which
the domain of interest has to be divided, and the number of
constants to be determined from the boundary conditions.

This work deals with the determination, by analytical
solutions, of the electromagnetic field created by an
arbitrary alternating current distribution external to a
conductive cylinder. Using the dyadic Green function
method, the electromagnetic field has been calculated for
every position of the cylinder relative to the current source.

The obtained general results are particularized for the
analytical solutions describing the operation of an eddy
current transducer with rotating magnetic field, obtained
in [7] for the case of a coaxial cylinder. The generality
of the method enables also the analysis of the influence of
eccentricity of the conductive cylinder, located inside the
transducer, on the transducer response.

The eddy current transducer with rotating magnetic
field permits us to detect long material discontinuities
placed almost parallel to the cylinder’s axis. In this
type of transducer, the magnetic field rotating around the
transducer’s axis has its rotating frequency equal to the
excitation current frequency and is scanning the lateral
surface of the inspected product.

2. Theory

Let us consider an infinitely long conductive cylinder of
radius r0, placed inside a current source of an arbitrary
shape (see figure 1). The cylinder has electric conductivity
σ and magnetic permeabilityµ = µ0 = 4π ×10−7 H m−1,
being homogeneous, isotropic and with linear properties.
The cylinder represents the�1 domain, delimited by the
surfacer = r0. The surroundings represent the�2 domain,
with zero electric conductivity andµ = µ0. Within the�2

domain a current source is located, with the distribution
J(x) sinusoidal in time and of an arbitrary form. For
frequency lower than 10 MHz, the domain of interest in
the eddy current control, the displacement current can be
neglected [8].
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Figure 1. Conducting cylinder inside an arbitrary current
source.

In the absence of the conductive cylinder, the electric
field E0 created by the source satisfies the equation [8]:

∇2E0 = −jωµ0J (1)

where j = √−1, ω is the angular frequency of the
alternating current in the source.

Given the arbitrary shape of the current source,E0 can
be determined by using the dyadic Green functionG(x,x′),
solution of the equation [9]:

∇2G0(x,x
′) = −δ(x,x′)I (2)

wherex represents the position vector of a point belonging
to the source,x′ is the position vector of an arbitrary point
in the space,δ(x,x′) is the Dirac functional andI is the
identity dyad.

The electric fieldE0 is defined as [10]:

E0(x) = jωµ0

∫ ∫ ∫
V source

G0(x,x
′) · J(x′) dx′ (3)

the integration extending over the source volume.
The symmetry of the�1 domain dictates the choice of

a cylindrical coordinate system with the unit vectorsur ,
uθ , uz having the Oz axis parallel to the cylinder axis.
G(x,x′) must have finite values along the Oz axis and
vanish atr → ∞. According to [9], the Green function
satisfying these conditions has the form:

G0(x,x
′) = I
|x− x′| (4)

where, for the chosen coodinate system,I = urur+uθuθ+
uzuz. According to [8]:

1

|x− x′| =
1

4π2

∫ +∞
−∞

+∞∑
m=−∞

Im(|h|r<)Km(|h|r>)
× exp[jh(z− z′)+ jm(θ − θ ′)] dh (5)

where we used the notations:r< = min(r, r ′); r> = max
(r, r ′); Im is the modified Bessel function of rank I andmth
order;Km is the Bessel function of rank II andmth order.

Introducing (4) and (5) into (3) gives the components of
the electric fieldE0 in the zone delimitated by the current
source of an arbitrary shape and the lateral surface of the
conducting cylinder (figure 1):

E0r (r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

dh

[
− jC1

h

|h|I
′
m(|h|r)

− jm

h2
C2
Im(|h|r)

r

]
ei(mθ+hz) (6)

E0θ (r, θ, z) =
−∞∑

m=−∞

∫ +∞
−∞

dh

[
C1
m

h

Im(|h|r)
r

+|h|
h2
C2I

′
m(|h|r)

]
ei(mθ+hz) (7)

E0z(r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

dh [C1Im(|h|r)] ej(mθ+hz) (8)

where:

C1(m, h) = jωµ0

4π2

∫ ∫ ∫
V source

Km(|h|r) e−j(mθ+hz)

×uz · J(r, θ, z)dV (9)

C2(m, h) = jωµ0

4π2

∫ ∫ ∫
V source

[∇×uzKm(|h|r) e−i(mθ+hz)]

·J(r, θ, z)dV (10)

and the prime represents the derivative ofIm(|h|r) with
respect to the variable.

The presence of conductive cylinder inside the current
source will result in the appearance of a supplementary
electric field produced by the induced eddy currents, which
in the region�2 is the solution of the equation:

∇2E1 = 0. (11)

The fieldE1 has to vanish forr →∞. In the chosen
coordinate system, the components ofE1 are:

E1
r (r, θ, z) =

+∞∑
m=−∞

∫ +∞
−∞

dh

[
−jF1

h

|h|K
′
m(|h|r)

− jm

h2
F2
Km(|h|r)

r

]
ej(mθ+hz) (12)

E1
θ (r, θ, z) =

+∞∑
m=−∞

∫ +∞
−∞

dh

[
F1
m

h

Km(|h|r)
r

+ |h|
h2
F2K

′
m(|h|r)

]
ei(mθ+hz) (13)

E1
z (r, θ, z) =

+∞∑
m=−∞

∫ +∞
−∞

dh [F1Km(|h|r)] ei(mθ+hz) (14)

where the functionsF1(m, h) and F2(m, h) have to be
determined from the conditions of continuity for the
electromagnetic field on the boundary of�1.

The electric field in the�1 domain isE1, satisfying the
equation:

∇2E1+ jωµ0σE1 = 0 (15)

having to be finite on the axis of the system.
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The components ofE1 are:

E1r (r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

dh

[
−jA1

h

a
I ′m(ar)

− jm

a2
A2
Im(ar)

r

]
ej(mθ+hz) (16)

E1θ (r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

dh

[
A1
mh

a2

Im(ar)

r

+ A2

a
I ′m(ar)

]
ej(mθ+hz) (17)

E1z(r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

dh [A1Im(ar)] ej(mθ+hz) (18)

wherea = (h2 − jω0σ)
1/2, A1(m, h) andA2(m, h) being

functions which are to be determined from the conditions
of continuity for the electromagnetic field on the boundary
of �1.

The electric field in the�2 domain isE2, the sum of
the electric field in the absence of the cylinder, and the field
due to the eddy currents:

E2 = E0+E1. (19)

Within the space delimited by the innermost part of the
source and the surface of the cylinder, the components of
E2 will be:

E2r (r, θ, z) = −j
+∞∑

m=−∞

∫ +∞
−∞

[[
h

|h| (C1(m, h)I
′
m(|h|r)

+F1(m, h)K
′
m(m, h))+

m

h2r
(C2(m, h)Im(|h|r)

+F2(m, h)Km(|h|r))
]

ej(mθ+hz)
]

dh (20)

E2θ (r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

[[
m

hr
(C1(m, h)Im(|h|r))

+F1(m, h)Km(m, h)+ |h|
h2
(C2(m, h)I

′
m(|h|r)

+F2(m, h)K
′
m(|h|r))

]
ej(mθ+hz)

]
dh (21)

E2z(r, θ, z) =
+∞∑

m=−∞

∫ +∞
−∞

[(C1(m, h)Im(|h|r)

+F1(m, h)Km(m, h))ej(mθ+hz)] dh. (22)

The functionsA1(m, h), A2(m, h), F1(m, h), F2(m, h)

are determined from the conditions of continuity on the
surface separating the domains�1 and�2:

E1× ur |r=r0 = E2× ur |r=r0
H1× ur |r=r0 =H2× ur |r=r0
B1 · ur |r=r0 = B2 · ur |r=r0 (23)

where

B1(r, θ, z) = 1

jω
∇ ×E1(r, θ, z)

B2(r, θ, z) = 1

jω
∇ ×E2(r, θ, z) (24)

andB = µH.

By replacing the relations (16), (17), (18), (20), (21),
(22) and (24) in the system (23), one obtains finally:

A1 = C2m

|h|r2
0ahI

′
m(|h|r0)[K ′m(|h|r0)− fKm(|h|r0)]

(25)

A2 = − C2

|h|r0Im(ar0)[K ′m(|h|r0)− fKm(|h|r0)]
(26)

F1 = −C1
Im(|h|r0)
Km(|h|r0) + C2

m

|h|r2
0ah

1

Km(|h|r0)
× Im(|h|r0)
I ′m(|h|r0)[K ′m(|h|r0)− fKm(|h|r0)]

(27)

F2 = C2
−I ′m(|h|r0)+ f Im(|h|r0)
K ′m(|h|r0)− fKm(|h|r0)

(28)

where we denoted:

f = m2

r2
0a|h|

(
1− h

2

a2

)
Im(ar0)

I ′m(ar0)
+ |h|

a

I ′m(ar0)
Im(ar0)

. (29)

By replacing the relations (25) and (26) with the
notation (29) in relations (16), (17) and (18), one obtains
the closed forms of the electric field components inside the
domain�2.

Using the relations (24) one can determine the magnetic
flux density in the two domains.

The obtained results can be particularized for the case of
the infinitely long conductive cylinder placed concentrically
with a circular turn supplied by an alternative current, the
situation described in [1].

Supposing the circular turn of radiusR is placed in
the planez = z0; the distribution of the alternating current
source can be written as:

J (r, θ, z) = I0δ(r − R)δ(z− z0)uθ (30)

whereI0 is the current amplitude in the source.
By replacing (30) in the expressions giving the

components of the electric field inside the two domains,
one obtains results identical to those obtained in [1] for the
case of the perfectly homogeneous cylinder.

The method proposed here needs no conditions of
continuity on the boundary delimitating the current source,
which reduces the size of the calculation and enables us
to deal with geometries of more complicated shape of the
current source.

3. Application: conductive cylinder in rotating
magnetic field

Cylinder conductive products, like wires, bars and pipes,
are often non-destructively examined by eddy current
methods in order to detect superficial and sub-superficial
flaws. As a result of the manufacturing technology, it is
possible that the obtained product presents long material
discontinuities placed almost parallel to its axis.

These discontinuities can appear on drawn wires if the
die is wrong, or in pipes welded after their generatrix if the
welding is discontinuous; or in rolled products if the rolls
are worn out. For this type of product it is important to
detect both short and long discontinuities. There are now,
two procedures enabling this type of control:
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Figure 2. Basic diagram of the transducer with rotating magnetic field: I, II, III—excitation windings; IV, V—pick-up coils;
VI—high-permeability ferrite core.

—control with an absolute encircling transducer, able
to detect also long discontinuities extending for the whole
product length, yet it has the shortcomings of poor
sensitivity, and high noise resulting, mainly, from the
vibration of the controlled product inside the transducer,
and

—control with a laid-on transducer rotating around the
inspected product, with the advantages of good sensitivity
and reduced noise, yet with the disadvantages of a
complicated construction, a limited control velocity and the
difficulty of controlling high-temperature products.

An alternative approach which we have proposed [11] is
to use a stationary transducer with rotating magnetic field
coupled with a pick-up coil encircling the product. This
has the advantage of a simple construction, due to the fact
that the external surface of the product under inspection is
scanned by stationary coils.

The basic diagram of the transducer is presented in
figure 2.

On a high-permeability ferrite torus three pairs of coils
are wound, placed at 2π/3 apart. The windings of a
pair are connected in series–opposition and are supplied
by three alternating currents of the same frequency and
amplitude, dephased by 2π/3. Given the connection of
the windings, three leakage alternating magnetic fields
of the same amplitude and dephased by 2π/3 will be
produced. Their resultant is a rotating magnetic field.
This construction is basically equivalent with that of three
identical coils placed 2π/3 apart and supplied by three-
phase currents (figure 3).

This section is dedicated to the determination of the
expressions of the electromotive force induced in the
pick-up coil of the eddy current transducer with rotating
magnetic field, as a particular case of the above theory.

According to [12], a system like that in figure 3
is equivalent to an infinite sequence of longitudinal and
transversal current sheets of the same amplitude (figure 4).

In the cylindrical coordinate systemρ, ϕ, z with the Oz
axis parallel to the current sheets axis, and the unit vectors

Figure 3. Principle of rotating magnetic field generation.

uρ , uϕ , uz, the current source can be written as:

J(ρ, ϕ, z) = izuz + iϕuϕ (31)

where, according to [12]:

iz = 4

π
îz

∞∑
s=1

1

s
sin(αL) cos(αz) sin(pϕ)δ(ρ − R) (32)

iϕ = −2R

H
îz

∞∑
s=1

1

s
sin(αL) sin(αz)

cos(pϕ)

p
δ(ρ−R) (33)

whereîz represents the amplitude of the alternative current
with the angular frequencyω inside the sheets,R is the
current sheet radius, 2L is the length of the longitudinal
current sheet; 2H is the distance along the Oz axis at
which thez components of the magnetic induction created
by the transducer vanishes, i.e. the zone within which
the transducer is sensitive to the material discontinuities;
α = sπ/2H , with s = 1, 3, 5, . . . ;p the number of
transducer pole pairs. For our transducer,p = 3.

An increased number of pole pairs will result in the
improvement of the angular distribution uniformity of the
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Figure 4. Substitution of the emission part of the eddy current transducer by an infinite sequence of axial and longitudinal
current sheets.

Figure 5. Conducting cylinder placed eccentrically inside
the current sheets.

rotating magnetic field amplitude inside the transducer, yet
its physical realization is more complicated.

The components of the electric field in the conductive
cylinder and within the region between the cylinder and the
current sheets, where the transducer coils are placed, for the
case of a cylinder coaxial with the current sheets, have the
expressions obtained by replacing (31) in (16), (17), (18)
and (20), (21), (22) respectively.

The functionsC1(m, h) andC2(m, h) appearing in the
expressions ofA1(m, h); A2(m, h); F1(m, h) andF2(m, h)

are given by:

C1(m, h) = ωµ0RKm(|h|R)îz 4

π

sin(αL)

s

×[δ(p −m)− δ(p +m)][δ(α + h)+ δ(α − h)] (34)

C2(m, h) = ωµ0RK
′
m(|h|R)îz

2R

H

sin(αL)

p

×[δ(p −m)+ δ(p −m)][δ(α − h)− δ(α + h)]. (35)

In the case when the cylinder axis is not identical to
the current sheet axis, two cylindrical coordinate systems
are used, namely the systemρ, ϕ, z attached to the current
sheets, i.e. to the transducer, and the systemr, θ, z attached
to the conductive cylinder (figure 5).

In order to write the conditions of continuity on
the lateral surface of the conductive cylinder, we need
the components of the electric fieldsE1 and E2 in the
coordinate system attached to the cylinder.

For a point P placed within the zone between the
cylinder and the current sheets, one can write [9]:

ejqψIq(|h|ρ) =
∞∑

m=−∞
ejmθIm(|h|x<)Im+q(|h|x>) (36)

where ρ,ψ, θ have the meaning given in figure 5,d
is the distance between the axes,x< = min(r, d) and
x> = max(r, d).

Using the relation (36), the components of the electric
field inside the conductor can be written as:

E1r =
∞∑
k=0

∞∑
m=0

[
A1
α

a
I ′m(ar)+ A2

α

a

Im(ar)

r

]
× sin(mθ) sin(αz) (37)

E1θ =
∞∑
k=0

∞∑
m=0

[
A1
αm

a2

Im(ar)

r
+ A2

1

a
I ′m(ar)

]
× cos(mθ) sin(αz) (38)

E1z =
∞∑
k=0

∞∑
m=0

A1Im(ar) sin(mθ) cos(αz). (39)

The components of the electric field inside the region
between the cylinder and the current sheets are:

E2r (r, θ, z) =
+∞∑
k=−∞

+∞∑
m=−∞

[
C1I

′
m(αr)+ F1K

′
m(αr)

+ m

α2r
(C2Im(αr)+ F2Km(αr))

]
sin(mθ) sin(αz) (40)

E2θ (r, θ, z) =
+∞∑
k=−∞

+∞∑
m=−∞

1

α

[
m

r
[C1Im(αr)+ F1Km(αr)]

+ m

α2r
(C2I

′
m(αr)+ F2K

′
m(αr))

]
cos(mθ) sin(αz) (41)

E2θ (r, θ, z) =
+∞∑
k=−∞

+∞∑
m=−∞

[C1Im(αr)+ F1Km(αr)]

× sin(mθ) cos(αz) (42)

where:

A1 =
2îzωµ0R

2K ′p(αR)

α2r2
0aH

sin(αL)
mεm

p

× (Im−p(αd)− Im+p(αd))
I ′m(αr0)

×
(
K ′m(αr0)−

(
m2

r2
0aα

(
1− α

2

a2

)
Im(ar0)

I ′m(ar0)

+ αI ′m(ar0)
aIm(ar0)

)
Km(ar0)

)−1

(43)
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A2 = −
2îzωµ0R

2K ′p(αR)

αr0Hp
sin(αL)εm

× (Im−p(αd)− Im+p(αd))
I ′m(αr0)

×
(
K ′m(αr0)−

(
m2

r2
0aα

(
1− α

2

a2

)
Im(ar0)

I ′m(ar0)

+ αI ′m(ar0)
aIm(ar0)

)
Km(ar0)

)−1

(44)

C1 = 4îzωµ0RKp(αR)

πs
× sin(αL)εm(Im−p(αd)+ Im+p(αd)) (45)

C2 =
2îzωµ0R

2K ′p(αR)

Hp

× sin(αL)εm(Im−p(αd)− Im+p(αd)) (46)

F1 = −4îzωµ0RKp(αR)

πs
× sin(αL)εm(Im−p(αd)+ Im+p(αd))

× Im(αr0)
Km(αr0)

+ 2îzωµ0R
2K ′p(αR)m

α2r2
0aHp

× sin(αL)εm(Im−p(αd)− Im+p(αd)) Im(αr0)

Km(αr0)I ′m(αr0)

×
(
K ′m(αr0)−

(
m2

aαr2
0

(
1− α

2

a2

)
Im(ar0)

I ′m(ar0)

+ αI ′m(ar0)
aIm(ar0)

)
Km(ar0)

)−1

(47)

F2 =
2îzωµ0R

2K ′p(αR)

Hp
sin(αL)εm(Im−p(αd)

−Im+p(αd))
(
−I ′m(αr0)+

(
m2

aαr2
0

(
1− α

2

a2

)
× Im(ar0)

I ′m(ar0)
+ αI

′
m(ar0)

aIm(ar0)

)
Im(ar0)

)
Im(αr0)

Km(αr0)I ′m(αr0)

×
(
K ′m(αr0)−

(
m2

aαr2
0

(
1− α

2

a2

)
Im(ar0)

I ′m(ar0)

+ αI ′m(ar0)
aIm(ar0)

)
Km(ar0)

)−1

(48)

with a = (α2− jωµ0σ)
1/2 and:

εm =
{

1/2 if m = 0

1 if m 6= 0.
(49)

The electromotive force induced in the pick-up coil of
the shape presented in figure 6, having one turn and the
contour0, is:

e =
∮
0

E · dl = 4
∫ L/2

−L/2

∞∑
k=0

∞∑
m=0

×[C1Im(αrk)+ F1Km(αrk)] cos(αz) dz (50)

whererk is the pick-up coil radius.
The case when the axis of the conductive cylinder is not

the transducer axis is quite common in the practice of non-
destructive control, given, on the one hand, the difficulty
of perfect centring and, on the other hand, the vibrations of
the inspected product during its displacement.

Figure 6. Schematic view of pick-up coil.

Figure 7. The chart of the voltage induced in a single-turn
coil for conductivities ranging between 105 and 1010 S m−1,
and different distances between the cylinder axis and
current source axis (d0 = rk − r0).

4. Results

The numerical calculations have been conducted for the
transducer with rotating magnetic field with the basic
diagram presented in figure 6. The magnetic induction
in the centre of the torus was 10−5 T, which implies an
amplitudei2 = 10 A for the current in the sheets. From
the experimental measurements, the following values of
the parameters resulted: 2L = 40 mm; 2H = 60 mm;
2R = 40 mm. The diameter of the studied cylinder was
2r0 = 4 mm. The filling factor was:η = (r0/rk)2 = 0.5.

Figure 7 illustrates the relation (49) in the complex
plane for different distances separating the conductive
cylinder axis and the transducer axis, the material
conductivity changing between 105 and 1010 S m−1 for
a frequency of 30 kHz. From the graphics one can notice
that an increasing distance between the two symmetry axes
results in the increasing electromotive force induced in the
transducer for the same value of the material conductivity.

Figure 8 presents the variation of the e.m.f. induced in
the transducer pick-up coil calculated from (50) for Inconel
600 with the conductivityσ = 0.1×107 S m−1 and different
values of the parameterd, the working frequency varying
between 1 kHz and 1 MHz.
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Figure 8. The chart of the voltage induced in a single-turn coil for frequencies of the rotating magnetic field ranging between
1 kHz and 1 MHz, and different distances between the cylinder axis and current source axis (d0 = rk − r0).

5. Discussion and conclusions

This work has presented a method to compute the
electromagnetic field created by an arbitrary source of
alternating current, placed in the vicinity of an infinitely
long conductive cylinder.

Using the dyadic Green function for the free space
enables a direct calculation of the electric field in the
absence of the conductive cylinder, thus eliminating the
necessity to impose boundary conditions on the current
source surface. For a certain mode of the solution, the
constants are determined depending on two functions given
as integrals over the current source volume.

As an application of the obtained general results,
the case of a conductive cylinder placed in the rotating
magnetic field of a special transducer has been considered.

The application of the general results obtained for the
situation when the current source has a more complicated
shape is limited by the difficulty of an analytical evaluation
of (9), (10), only their numerical evaluation generally being
possible.

The generality of the method enables an immediate
approach of the situation when the conductive cylinder
consists of a certain number of layers of different
conductivities.

An approach similar to that of section 2 permits us
to calculate the dyadic Green functions of the problem,
the electromagnetic field in the material and the air being

written in a compact form, as integrals over the current
source volume.

The knowledge of these functions enables also the
evaluation of the response of the transducer with rotating
magnetic field in the case of a conductive cylinder
presenting a discontinuity of an arbitrary form.
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