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Abstract
This paper describes the calculation of eddy currents in a cylindrical
conductive rod of finite length due to a coaxial circular coil carrying an
alternating current. The coil impedance variation with frequency is
determined from the field for an arbitrary coaxial location of the coil.
Expressions for electromagnetic field and impedance of a coil encircling an
infinite cylindrical rod are well known, the results being expressed as infinite
integrals involving Bessel functions. For a finite length rod, additional
boundary conditions must be satisfied at the ends. The extra boundary
conditions are accommodated here by recasting the problem in a domain of
finite extent in the axial direction. The axial length of the truncated domain
is arbitrary and can be large compared with the coil length or the length of
the rod. Therefore, the truncated domain solution can yield results that are
numerically as close to the infinite domain solution as desired. The results
provide a simple means of calculating the impedance of an inductor with a
lossy core and can be used to investigate the linear properties of the core
material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The quasi-static electromagnetic field produced by a coil of
rectangular cross-section coaxial with a infinitely long rod can
be written in closed integral form [1, 2]. This useful solution
has been applied to a number of problems in nondestructive
evaluation [3–5]. Here we describe an analytical approach
for calculating the quasi-static coil field in the presence of a
coaxial rod of finite length taking the end effects into account.

In general, the field inside a finite rod having linear
material properties should be appropriately matched at the
interface with the field in the surrounding medium, assumed
here to be nonconductive. In the case of an infinite rod, the
interface conditions are applied at its cylindrical surface only,
but for a finite rod, they must also be applied at its ends. Special
solutions for the field excited by a coaxial coil encircling a
finite rod have been found in this manner for the case where
the coil current has even symmetry about the rod mid-plane,

perpendicular to the axis. Both time harmonic and transient
solutions have been determined [6].

An analytical result for a similar even source problem was
later found on the assumption that the relative permeability
of the rod is very much greater than one. This assumption
implies that the axial magnetic field, Hz, within, and at a point
approaching the end of the rod can be approximated as zero [7].
The approximation provides a convenient boundary condition
at the circular ends of the rod for the solution representing the
internal field. However, since the solution sought is supposed
to represent the field of a finite length ferrite rod in free space,
it should not constrain Hz, to be zero over the whole of the
surfaces coplanar with the rod ends, but unfortunately, this is
what the authors have done.

Here, we determine the quasi-static field of a cylindrical
coil of rectangular cross-section whose centre is at an arbitrary
location on the axis of a finite length conductive rod (figure 1).
The solution is a generalization of that given by Nethe [6] and

0022-3727/05/162861+08$30.00 © 2005 IOP Publishing Ltd Printed in the UK 2861

http://dx.doi.org/10.1088/0022-3727/38/16/019
http://stacks.iop.org/jd/38/2861


J R Bowler and T P Theodoulidis

2c

r

Coil

Conductive 
rod

Figure 1. Coil encircling a finite cylindrical rod, length 2c radius r .

uses a similar method, but is not confined to the even source
case. The procedure, based on mode matching in a truncated
domain, is easily adapted to deal with a finite layered rod or
a finite tube. A similar analysis has previously been given to
account for the end effects produced by an internal bobbin coil
in a finite coaxial cylindrical tube [8]. The procedure has also
been used to study a ferrite-cored eddy current probe [9] and
a coil coaxial with a hole in a plate [10].

2. Magnetic vector potential

Consider a time-harmonic field varying in time t at an angular
frequency ω as the real part of exp(−ıωt). The electric and
magnetic field due to a coil encircling a conducting cylinder can
be written in terms of the magnetic vector potential A = φ̂A as

Eφ = ıωA and H = 1

µ0µr
∇ × (φ̂A), (1)

where µr is the relative permeability. The vector potential
satisfies

∇2A = −µ0J (2)

in the region outside the conductor, where J = Jφφ̂ is the
current density of the source coil. The magnetic vector
potential for the conductive region satisfies the homogeneous
Helmholtz equation

(∇2 + k2)A = 0 (3)

subject to interface conditions ensuring that the tangential
electric and magnetic fields are continuous at the surface of
the conductor. In (3), k2 = ıωµ0µrσ , where σ is the electrical
conductivity of the rod.

For an axially symmetric field, separation of variables
requires that a solution is sought in the form of a product of two
functions, say R(ρ) and Z(z). Setting (d2Z/dz2)/Z = −κ2

leads to a solution for the conductive region of the form

Z(z) = a(κ) sin(κz) + b(κ) cos(κz), (4)

R(ρ) = C(κ)I1(γρ) + D(κ)K1(γρ), (5)

where γ = (κ2 − ıωµ0µrσ)1/2, taking the root with a positive
real part. One of the functions a(κ), b(κ), C(κ) and D(κ) is

1 2

h

z

ρ
0

z

0

Figure 2. Circular current filament in a truncated domain.

redundant, D(κ) is zero because otherwise the K1(γρ) would
give a singular field on the axis and the other two unknown
functions of κ are determined by the interface conditions.

For the nonconducting region, one can either replace γ in
the Bessel function arguments of (5) with κ to get a solution or
replace κ in the trigonometric function argument of (4) with γ .
In either case, (2) is satisfied, except in the source region.
The latter option is used for the nonconducting region adjacent
to the end of the rod, ensuring that the radial solution for the
nonconducting region matches that for the conductive region
across the ends of the rod.

3. Current source field

A general solution for an infinite rod is expressed in terms
of integrals of the product R(ρ)Z(z) with respect to κ over
the range zero to infinity. However, in order to calculate a
solution for a finite rod, it is helpful to truncate the domain of
the problem in the z-direction to a zone bounded at z = −h

and h. Then the field is expressed as a summation, rather than
as an integral. Only half of this domain is considered (figure 2),
since the required solution is a linear combination of solutions
that are odd and even in z. A solution for the truncated domain
is not identical to one for the infinite domain, but by making
h as large as necessary, it is possible, in principle, to make the
numerical results for the truncated domain as close as desired
to the unbounded domain results.

The development here is in three steps. First, a filamentary
coil solution is established for the truncated domain. Next, the
filament solutions are superimposed to get a coil solution and
finally the effects of the finite coaxial rod are included. It will
be assumed that the tangential electric field on the boundary
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(a) (b) (c)

Figure 3. The parity of the solution, with respect to the z variable is
defined here in terms of the coil current. (a) Odd parity configuration
in which two identical coils symmetrically placed about the plane
z = 0 carry current in opposite directions. (b) Even parity
configuration in which the current is in the same direction. (c) The
field of a single coil is half the sum of the odd or even solutions.

z = h is zero. Initially, the solution sought for A is one which
has odd symmetry with respect to z: A(ρ, z) = −A(ρ, −z).
A solution for even symmetry is also given following a similar
procedure.

3.1. Symmetry

The odd parity solution represents the field due to a rod length
2h encircled by two identical coaxial coils carrying current in
the opposite azimuthal directions and located symmetrically on
opposite sides of the z = 0 plane, figure 3. If the rod happens
to be long and the coils well separated then the electric field
due to one such coil may be negligible in the z = 0 plane, in
which case, the odd parity solution gives a good approximation
to the field of a single coil in the half-space that it occupies.
It should also give a good approximation to the problem of a
coil on a semi-infinite rod since, for example, the location of
the end of the rod in the negative-z half-space would have a
negligible effect on the field in the positive-z half-space.

In order to represent end effects due to a short rod
and a co-axial coil, both odd and even parity solutions are
needed. The even parity solution represents the field due to two
identical coaxial coils carrying current in the same azimuthal
direction symmetrically placed about the z = 0 plane, figure 3.
Incidently, if the rod is long and the coils well separated, even
and odd solutions should be similar in one half-space, for
z > 0, say. Half the sum of the odd and even solutions gives the
solution for one coil encircling a finite rod of arbitrary length.

3.2. Filament field of odd parity

The current density of a filament, expressed in terms of the
current I is

Jφ = Iδ(z − z0)δ(ρ − ρ0) (6)

and the magnetic vector potential due to the filament is µ0IG
where G = Gφ̂ satisfies

∇2G(ρ, z|ρ0, z0) = −δ(ρ − ρ0)δ(z − z0)φ̂. (7)

Putting G = G1 for the region 1 solution, and G = G2 for the
region 2 solution, figure 2, the solution of (7) is written as

G1(ρ, z|ρ0, z0) =
∑

j

sin(κj z)I1(κjρ)c
(0)
j (ρ0, z0), (8)

which must remain finite at the axis with

G2(ρ, z|ρ0, z0) =
∑

j

sin(κj z)K1(κjρ)d
(0)
j (ρ0, z0), (9)

which vanishes as ρ → ∞, and where κj = jπ/h with
j = 1, 2, 3, . . .. Although the solution is expressed here as
an infinite sum, for numerical calculations a finite number of
terms is taken.

The continuity conditions at the interface of region 1
and 2 are

G1 = G2 and
∂G1

∂ρ

∣∣∣∣
ρ=ρ0

= ∂G2

∂ρ

∣∣∣∣
ρ=ρ0

+ δ(z − z0).

(10)

This second condition is found by integrating (7) between
ρ0 − ε and ρ0 + ε, and taking the limit as ε tends to zero.
Substituting (8) and (9) into (10) and multiplying by sin(κiz),
integrating with respect to z between 0 and h and using the
orthogonality property,∫ h

0
sin

(nπx

h

)
sin

(mπx

h

)
dx = h

2
δnm, (11)

gives

I1(κjρ0)c
(0)
j (ρ0, z0) = K1(κjρ0)d

(0)
j (ρ0, z0) (12)

and
∂I1(κjρ)

∂ρ

∣∣∣∣
ρ=ρ0

c
(0)
j (ρ0, z0) = ∂K1(κjρ)

∂ρ

∣∣∣∣
ρ=ρ0

d
(0)
j (ρ0, z0)

+
2

h
sin(κj z0), (13)

from which it is found, using expressions for the derivatives
and the Wronskian of associated Bessel functions [13]3, that

c
(0)
j (ρ0, z0) = 2

h
sin(κj z0)ρ0K1(κjρ0) (14)

and

d
(0)
j (ρ0, z0) = 2

h
sin(κj z0)ρ0I1(κjρ0). (15)

The filament field is thus given by (8) and (9) with the
expansion coefficient found from (14) and (15). Note that
the field due to a coaxial coil with an arbitrary cross-section
can be determined from a superposition of filament fields and
likewise, the field of more than one coaxial coil, possibly
configured differentially, may be found by applying the
superposition principle.

3.3. Coil field

In general, the vector potential for an axially symmetric coil is
given by a superposition of filament fields expressed as

A(ρ, z) = µ0

∫
Sc

G(ρ, z|ρ0, z0)Jφ(ρ0, z0) dS, (16)

where Sc is the coil cross-section. The vector potential in
region 2 due to the coil, figure 4 has the form

A2(ρ, z) = µ0ndI
∑

j

sin(κj z)I1(κjρ)C
(0)
j . (17)

3 Derivative of associated Bessel functions are given by 9.6.26 and we use
the Wronskian 9.6.15.
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Figure 4. Coil coaxial with a finite rod.

For a tightly-wound uniform coil of rectangular cross-section,
one writes the current density as ndI , where nd is the coil
turns density. Substituting (8) into (16), integrating over the
coil cross-section and comparing the resultant relationship
with (17) gives

C
(0)
j =

∫ a1

a2

∫ z1

z2

c
(0)
j (ρ0, z0) dρ0 dz0

= − 2

hκ3
j

[cos(κj z1) − cos(κj z2)]K1(κja1, κja2), (18)

where

K1(r1, r2) =
∫ r1

r2

rK1(r) dr, (19)

which can be expressed in terms of a Meijer G-function, or in
terms of Struve and Bessel functions [12].

4. Rod field

The above analysis can be extended to the case where the coil
encircles a finite conductive rod, radius r (figure 4), by writing
the odd parity solution as

A1(ρ, z) = µ0ndI
∑

j

[
sin(qj z)

αj sin[γj (h − z)]

]
I1(γjρ)Cj

0 � z < c,

c � z � h,
(20)

A2(ρ, z) = µ0ndI
∑

j

sin(κj z)[I1(κjρ)C
(0)
j + K1(κjρ)Dj ]

0 � z < h, (21)

where κj = jπ/h and C
(0)
j is given by (18) from the analysis

of the coil in free space. The eigenvalues γj and qj are related

by γj =
√

q2
j − ıωµ0µrσ and are found as follows. Using the

continuity of Hρ at the end of the rod, it is found from equation
(20) that

αj = − qj cos(qj c)

µrγj cos[γj (h − c)]
(22)

and from the continuity of Eφ at the end of the rod,

sin(qj c) = αj sin[γj (h − c)]. (23)

With αj given by (22), the values of qj are sought which satisfy

µrγj tan(qj c) + qj tan[γj (h − c)] = 0, (24)

which is found from (22) and (23).
From the continuity of Eφ and Hz at ρ = r ,

A1 = A2 (25)

and
 1

µr

1


 1

r

∂(ρA1)

∂ρ

∣∣∣∣
ρ=r

=
[

1

1

]
1

r

∂(ρA2)

∂ρ

∣∣∣∣
ρ=r

0 � z < c,

c � z � h.

(26)

Substituting (20) and (21) into (25), multiplying by sin(κiz)

and integrating from zero to h gives

UI1(γr)C = I1(κr)C(0) + K1(κr)D. (27)

Similarly, from (26),

1

µr
VI0(γr)γC = I0(κr)κC(0) − K0(κr)κD. (28)

Here Bessel functions with bold symbol arguments represent
diagonal matrices. C(0) C and D are column vectors of
expansion coefficients. U and V are matrices whose elements
are given by

Uij = 2

h

[∫ c

0
sin(κiz) sin(qj z) dz

− qj cos(qj c)

µrγj cos[γj (h − c)]

∫ h

c

sin(κiz) sin[γj (h − z)] dz

]
(29)

and

Vij = 2

h

[∫ c

0
sin(κiz) sin(qj z) dz

− qj cos(qj c)

γj cos[γj (h − c)]

∫ h

c

sin(κiz) sin[γj (h − z)] dz

]
.

(30)

The first integral in (29) and (30) is calculated from∫ c

0
sin(κiz) sin(qj z) dz

=




sin[(qj − κi)c]

2(qj − κi)
− sin[(qj + κi)c]

2(qj + κi)
, κi �= qj ,

c

2
− sin(2cκi)

4κi

, κi = qj

(31)
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and the second, from∫ h

c

sin(κiz) sin[γj (h − z)] dz

=




(κi cos(κic) sin[γj (c − h)] − γj sin(κic)

× cos[γj (c − h)])(γ 2
j − κ2

i )−1, κi �= γj ,

(2(c − h)κi cos(κih)

+ sin[κi(h − 2c)])(4κi)
−1, κi = γj .

(32)

Eliminate D by adding K0(κr)κ×(27) to K1(κr)×(28) to give

C = 1

r

[
K0(κr)κUI1(γr) +

K1(κr)VI0(γr)γ

µr

]−1

C(0).

(33)
Similarly, eliminate C(0) by subtracting I1(κr) × (28) from
I0(κr)κ × (27) to give

D = r

[
I0(κr)κUI1(γr) − I1(κr)VI0(γr)γ

µr

]
C. (34)

Combining (33) and (34) gives

D = WC(0), (35)

where

W =
[
I0(κr)κUI1(γr) − I1(κr)VI0(γr)γ

µr

]

×
[
K0(κr)κUI1(γr) +

K1(κr)VI0(γr)γ

µr

]−1

. (36)

Equations (33) and (34) give the coefficients in (20) and (21) in
terms of the prescribed source coefficients C(0) defined by (18).

5. Even parity solution

The even parity solution can be found following a procedure
similar to that given in the foregoing sections for the odd parity
solution. Rather than going through the derivation in full, the
distinctive features of the even parity solution are summarized
below. It is worth noting at the outset, however, that the main
results of the previous section, equations (33)–(36) can be
preserved in their original form to represent either odd, even
or a linear combination of both odd and even solutions. One
only needs to introduce a new set of eigenvalues for κ and
q, and modifying the definition of the matrices, U and V the
one-coil solution is obtained. These modifications will now be
outlined.

Consider first, the fundamental solutions, (8) and (9). For
the even solution, these must be expressed in terms of cosines
rather than sines of κz. Consequently, the condition that the
field vanishes at the boundary z = h is satisfied by letting
κj = (2j − 1)π/2h, j = 1, 2, 3, . . .. Then, instead of (18),
the coefficients C

(0)
j , for the even solution are given by

C
(0)
j = 2

hκ3
j

[sin(κj z1) − sin(κj z2)]K1(κja1, κja2). (37)

With the expression in (20) for the vector potential
representing the field in the region 1 replaced by

A1(ρ, z) = µ0ndI
∑

j

[
cos(qj z)

αj sin[γj (h − z)]

]
I1(γjρ)Cj ,

0 � z < c,

c � z � h
(38)

and with (21) rewritten with the cosine in place of the sine,
it is found from the continuity conditions at the end of the
rod, that the new eigenvalues for the even symmetry case are
solutions of

qj tan(qj c) − µrγj cot[γj (h − c)] = 0. (39)

Finally, it is found that the matrices U and V are defined in
terms of the new appropriate eigenvalues for an even solution
with their matrix elements, given by

Uij = 2

h

[∫ c

0
cos(κiz) cos(qj z) dz +

cos(qj c)

sin[γj (h − c)]

×
∫ h

c

cos(κiz) sin[γj (h − z)] dz

]
(40)

and

Vij = 2

h

[∫ c

0
cos(κiz) cos(qj z) dz +

µr cos(qj c)

sin[γj (h − c)]

×
∫ h

c

cos(κiz) sin[γj (h − z)] dz

]
. (41)

The first integral in (40) and (41) is calculated from∫ c

0
cos(κiz) cos(qj z) dz

=




sin[(qj − κi)c]

2(qj − κi)
+

sin[(qj + κi)c]

2(qj + κi)
, κi �= qj ,

c

2
+

sin(2cκi)

4κi

, κi = qj

(42)

and the second, from∫ h

c

cos(κiz) sin[γj (h − z)] dz

=




(−κi sin(κic) sin[γj (c − h)] − γj cos(κic)

× cos[γj (c − h)])(γ 2
j − κ2

i )−1, κi �= γj ,

(2(h − c)κi sin(κih)

− cos[κi(h − 2c)])(4κi)
−1, κi = γj .

(43)

6. Impedance

The impedance can be calculated from a relationship derived
using a reciprocity theorem [14]:

I 2�Z =
∫

S0

(�E × H(0) − E(0) × �H ) · dS, (44)

where the superscript (0) indicates the field in the absence of
the conducting rod. �E and �H are the electric and magnetic
field due to the presence of the rod. The surface S0 encloses
the primary source, the coil in this case, and the direction of
dS is that of an outward normal with respect to the source.
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The surface S0 will be taken to be in the region at the
surface of radius a. Substituting the vector potential into the
equation for the impedance due to the rod gives

I 2�Z = 2πıω

µ0

∫ h

0

[
A(0) ∂(ρ�A)

∂ρ
− �A

∂(ρA(0))

∂ρ

]
ρ=a

dz.

(45)

Using (20) and (21) and applying Parseval’s theorem for
Fourier series, one finds that

�Z = −ıωµ0πhn2
d C(0)WC(0). (46)

This expression is valid for both, the odd and even parity
solutions. We just have to use the appropriate vector C(0),
matrices U and V and eigenvalues κ and γ for each parity.
The final impedance change is computed via the average of
the even and odd parity fields.

7. Corroboration

A useful check on the formulation can be done by considering
the limiting case c → h when the solution represents the
case of a coil encircling an infinitely long rod. In this
case, all of the matrices are diagonal and the final expression
for the impedance change can be given in the form of a
series. The following simplified expressions are deduced after
considering (46) for the odd or even parity solutions in the limit
of c → h.

�Z = ıωµ0πhn2
d

∑
j

[C(0)
j ]2

× κjµrI0(κj r)I1(γj r) − γj I1(κj r)I0(γj r)

κjµrK0(κj r)I1(γj r) + γjK1(κj r)I0(γj r)
. (47)

The coil can be placed at various positions in this limiting case.
If it is placed at z = 0 we need to consider only the even parity
solution. We can also put the coil at the middle of the half
geometry at c = h/2. While the impedance change should, in
principle, be based again on calculating the average of the odd
and even parity solutions, we can get an approximate solution
by taking into account only one of them. Equation (47) can be
compared to the classical integral expression derived in [2]

�Z = ıωµ04n2
d

∫ ∞

0
K1(κa1, κa2)

2 1 − cos[κ(z2 − z1)]

κ6

× κµrI0(κr)I1(γ r) − γ I1(κr)I0(γ r)

κµrK0(κr)I1(γ r) + γK1(κr)I0(γ r)
dκ. (48)

For the finite length rod, the most important numerical
aspect of the presented formulation is the calculation of
eigenvalues. A detailed analysis of the Newtonian iteration
process used in finding the complex roots of (24) and (39) is
described elsewhere [11]. In the same reference, we provide
a rule of thumb on the number of required eigenvalues and
the extent of the truncated region h. We base our selection
on the use of these quantities in the case of the long rod and
on the comparison of (47) and (48). For a larger solution
domain, a greater number of eigenfunctions is needed to
achieve accurate results. However, the larger domain more
accurately approximates the infinite domain problem.

Apart from the calculation of eigenvalues, the other
significant numerical aspect of the solution is the inversion
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Figure 5. Variation of coil resistance and reactance change with
distance from the rod end: comparison between results of
eigenfunction expansions (——) and a finite element calculation
(◦ ◦ ◦ ◦ ◦).

of the full matrix in (36), which is a rather trivial task when
using either a higher programming language or a general
mathematical package such as Mathematica or Matlab. Let
us only emphasize that in a parametric study involving the rod
radius or the position and dimensions of the coil, this matrix
needs to be inverted only once. In situations like this, the
method is advantageous over other numerical methods such
as the finite element method (FEM). For example, for one
coil position the CPU times of eigenfunction expansions and
the FEM are about the same, with most of the time in the
eigenfunction expansions method spent on the computation of
eigenvalues. For more coil positions, however, the method
is much faster since the matrix inversion and computation of
eigenvalues do not need to be repeated. The number of coil
positions is a rough estimate of how many times the method is
faster than the FEM.

In the following, we show the calculated impedance
variation of a coil as it is traversed across the end of a semi-
infinite rod. This geometry actually simulates the end effect in
terms of an impedance variation and is modelled here by setting
c = h/2. Figure 5 shows the coil resistance and reactance
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Figure 6. Normalized impedance plane showing the variation of the
coil impedance with frequency for a long rod (——). Note that the
direction of increasing frequency is indicated by the arrow. The
variation of the coil impedance with distance zc, from the rod end is
shown by the dashed lines for three different frequencies.

changes at three distinct frequencies when the coil is traversed
across the end of an aluminum rod. The rod conductivity
is 18.72 MS m−1. The coil parameters are a1 = 10 mm,
a2 = 9 mm, z1 − z2 = 4 mm and N = 400. The solution
domain length is h = 200 mm and the number of terms in the
series is Ns = 80. For the limiting case of an infinite rod,
these values of h and Ns gave an agreement with the integral
expression, to within 0.1% for all frequencies. The ordinate
zc = (z2 + z1)/2 − c denotes the distance of the coil centre
from the rod end, and is negative when the coil encircles the rod.
The impedance change is normalized, the normalization factor
being the isolated coil reactance X0 [1]. The theoretical results
are compared with the numerical ones obtained with a two-
dimensional finite element package and excellent agreement is
obtained. The same information is also shown in figure 6 as an
impedance plane diagram, together with the frequency curve of
the same coil encircling an infinitely long rod. The significant
feature of these results is that, while the coil reactance increases
monotonically as the coil is traversed across the end, the
resistance peaks before decreasing, a behaviour which was
also observed in [8].

Next, we depict the effect of the aluminum rod length on
the impedance change of the encircling coil when it is placed
at the centre of the rod. The results in figure 7 show that the rod
length starts to have a noticeable effect on the coil impedance
when it is smaller than two coil lengths with the stronger
relative change taking place at lower frequencies. Note that
ultimately the coil resistance changes at 10 and 100 kHz will
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Figure 7. Variation of coil resistance and reactance change with rod
length.

also decrease to zero, but this happens for a rod length which
is much smaller than 1 mm.

8. Conclusion

The axisymmetric problem of a coil encircling a finite length
rod was solved in this paper using eigenfunction expansions.
The method has numerical aspects such as the inversion of a
full matrix and the computation of eigenvalues but it avoids
the discretization of the solution domain and yields analytical
expressions in closed form.

The eigenfunction expansions method is a very useful tool
since it has the power to solve many important eddy current
problems. Possible extensions and potential applications of
the method include analysis of a layered rod or a finite length
tube or a rod with axisymmetric grooves.
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